Capacitance Diaphragm Gauge
CDG045D

Operating Manual
Incl. EU Declaration of Conformity
Further languages under www.inficon.com
Product Identification

In all communications with INFICON, please specify the information given on the product nameplate. For convenient reference copy that information into the space provided below.

Validity

This document applies to products of the CDG045D series.

Part numbers of standard products are indicated below. OEM products have other part numbers and different parameter settings (e.g. factory setting of setpoint) as defined in the corresponding ordering information.
3CC1-xxx-xxxx

Switching function
0 ⇒ None
2 ⇒ 2 switching functions

Interface
0 ⇒ None (analog)
1 ⇒ DeviceNet
2 ⇒ Profinet
8 ⇒ EtherCAT *)
G ⇒ EtherCAT **)}

Filter
0 ⇒ Standard
B ⇒ P control

Receptacle
1 ⇒ D-sub, 9-pin
3 ⇒ D-sub, 15-pin

Flange
1 ⇒ DN 16 ISO-KF
3 ⇒ DN 16 CF-R
9 ⇒ 1/2" tube
C ⇒ 4 VCR male
D ⇒ 4 VCR female
E ⇒ 8 VCR female
H ⇒ 8 VCR female, long tube

Unit
5 ⇒ Torr (x 133 Pa; x 1.3 mbar)
6 ⇒ mbar (x 100 Pa)
2 ⇒ 0.05
3 ⇒ 0.1
4 ⇒ 0.25
5 ⇒ 0.5
6 ⇒ 1
7 ⇒ 2
8 ⇒ 5
9 ⇒ 10
A ⇒ 20
B ⇒ 50
C ⇒ 100
D ⇒ 200
E ⇒ 500
F ⇒ 1000 (Torr only)
G ⇒ 1100 (mbar only)

*) ETG.5003.2080 S (R) V1.0.0
**) ETG.5003.2080 S (R) V1.3.0
The part number (PN) can be taken from the product nameplate. If not indicated otherwise in the legends, the illustrations in this document correspond to gauges with D-Sub 15-pin connector and DN 16 ISO-KF vacuum connection. They apply to the other gauges by analogy.
We reserve the right to make technical changes without prior notice.

Intended Use

The temperature compensated Capacitance Diaphragm Gauges of the CDG045D series are intended for absolute pressure measurement of gases in their respective pressure ranges ($\rightarrow 2$).

The gauges belong to the SKY® Smart Sensors family and can be operated in connection with an INFICON Vacuum Gauge Controller (VGC series) or another appropriate controller.

Functional Principle

A ceramic diaphragm is deflected by pressure. The deflection is measured capacitively and converted into an analog linear output signal by the digital electronics.

The output signal is independent of the gas type.

Very accurate pressure measurement is achieved by heating the sensor to a constant temperature of 45°C which results in a compensation of changes in the ambient conditions and a reduced deposition of process products and by-products in process applications.

Trademarks

SKY® INFICON GmbH
VCR® Swagelok Marketing Co.
Patents
EP 1070239 B1, 1040333 B1
US Patents 6528008, 6591687, 7107855, 7140085

Scope of Delivery
1× gauge CDG045D
1× pin
1× Calibration Test Report
1× Operating Manual German
1× Operating Manual English

Contents
Product Identification 2
Validity 2
Intended Use 4
Functional Principle 4
Trademarks 4
Patents 5
Scope of Delivery 5

1 Safety 7
1.1 Symbols Used 7
1.2 Personnel Qualifications 7
1.3 General Safety Instructions 8
1.4 Liability and Warranty 8

2 Technical Data 9
3 Installation 15
 3.1 Vacuum Connection 15
 3.2 Power Connection 18
 3.2.1 D-Sub, 9-pin Connector 19
 3.2.2 D-Sub, 15-pin Connector 20

4 Operation 21
 4.1 Status Indication 21
 4.2 Zeroing the Gauge 22
 4.2.1 <ZERO> Adjustment 23
 4.3 Switching Functions 27
 4.4 Activating the Factory Setting (Factory Reset) 30
 4.5 Diagnostic Port (RS232C Interface) 31

5 Deinstallation 32

6 Maintenance, Repair 34

7 Returning the Product 34

8 Disposal 35

9 Accessories 36

Further Information 36
ETL Certification 38
EU Declaration of Conformity 39

For cross-references within this document, the symbol (→ XY) is used, for cross-references to further documents, listed under "Further Information", the symbol (→ [Z]).
1 Safety

1.1 Symbols Used

DANGER
Information on preventing any kind of physical injury.

WARNING
Information on preventing extensive equipment and environmental damage.

Caution
Information on correct handling or use. Disregard can lead to malfunctions or minor equipment damage.

Notice

1.2 Personnel Qualifications

Skilled personnel
All work described in this document may only be carried out by persons who have suitable technical training and the necessary experience or who have been instructed by the end-user of the product.
1.3 General Safety Instructions

- Adhere to the applicable regulations and take the necessary precautions for the process media used. Consider possible reactions with the product materials.

- Adhere to the applicable regulations and take the necessary precautions for all work you are going to do and consider the safety instructions in this document.

- Before beginning to work, find out whether any vacuum components are contaminated. Adhere to the relevant regulations and take the necessary precautions when handling contaminated parts.

Communicate the safety instructions to all other users.

1.4 Liability and Warranty

INFICON assumes no liability and the warranty becomes null and void if the end-user or third parties

- disregard the information in this document
- use the product in a non-conforming manner
- make any kind of interventions (modifications, alterations etc.) on the product
- use the product with accessories not listed in the product documentation.

The end-user assumes the responsibility in conjunction with the process media used.
Gauge failures due to contamination are not covered by the warranty.
Technical Data

For further technical data for gauges with DeviceNet, Profibus or EtherCAT interface → [6], [7], [8] and [9].

<table>
<thead>
<tr>
<th>Measurement range</th>
<th>→ "Validity"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy 1)</td>
<td>0.15% of reading</td>
</tr>
<tr>
<td>Temperature effect on zero</td>
<td>0.0050% F.S./ °C</td>
</tr>
<tr>
<td>0.05 ... 0.5 F.S.</td>
<td>0.0025% F.S./ °C</td>
</tr>
<tr>
<td>1 ... 1100 F.S.</td>
<td>0.01% of reading / °C</td>
</tr>
<tr>
<td>Temperature effect on span</td>
<td>0.003% F.S.</td>
</tr>
<tr>
<td>Resolution</td>
<td>none</td>
</tr>
<tr>
<td>Gas type dependence</td>
<td>none</td>
</tr>
</tbody>
</table>

Output signal analog (measurement signal)

<table>
<thead>
<tr>
<th>Measurement range</th>
<th>0 ... +10 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage range</td>
<td>−5 ... +10.24 V (limited to +10.24 V)</td>
</tr>
<tr>
<td>Relationship voltage-pressure</td>
<td>linear</td>
</tr>
<tr>
<td>Output impedance</td>
<td>0 Ω (short-circuit proof)</td>
</tr>
<tr>
<td>Loaded impedance</td>
<td>>10 kΩ</td>
</tr>
<tr>
<td>Response time</td>
<td>2) ≥0.25 Torr/mbar (F.S.) 30 ms</td>
</tr>
<tr>
<td></td>
<td>0.05 / 0.1 Torr/mbar (F.S.) 130 ms</td>
</tr>
</tbody>
</table>

Identification

| Resistance R_{Ident} | 13.2 kΩ referenced to supply common |
| Voltage | ≤5 V |

1) Non-linearity, hysteresis, repeatability at 25 °C ambient operating temperature without temperature effects after operation of 2 h.

2) Increase 10 ... 90 % F.S.R.
<table>
<thead>
<tr>
<th>Remote Zero Adjust</th>
<th>digital input for zero adjustment with external switching contact (\rightarrow) 23</th>
</tr>
</thead>
<tbody>
<tr>
<td>External switching contact</td>
<td>Pulse [30 \text{ V (dc)} / <5 \text{ mA (dc)} >1 \text{ s} \ldots <5 \text{ s}]</td>
</tr>
<tr>
<td>Switching functions</td>
<td>SP1, SP2</td>
</tr>
<tr>
<td>Setting range</td>
<td>0 \ldots 99% \text{ F.S. (0 \ldots 9.9 V)}</td>
</tr>
<tr>
<td>Hysteresis</td>
<td>1% \text{ F.S.}</td>
</tr>
<tr>
<td>Relay contact</td>
<td>[30 \text{ V (dc)} / \leq 0.5 \text{ A (dc)}] floating (NO)</td>
</tr>
<tr>
<td>closed</td>
<td>(p \leq p_{\text{SP}}) (LED lit solid)</td>
</tr>
<tr>
<td>open</td>
<td>(p \geq p_{\text{SP}}) (LED off)</td>
</tr>
<tr>
<td>Switching time</td>
<td>(\leq 50 \text{ ms})</td>
</tr>
<tr>
<td>Status relay</td>
<td>Relay contact [30 \text{ V (dc)} / \leq 0.5 \text{ A (dc)}] connected to supply common (pin 5)</td>
</tr>
<tr>
<td>closed</td>
<td>measurement mode warning</td>
</tr>
<tr>
<td>open</td>
<td>no supply voltage warming up error</td>
</tr>
<tr>
<td>RS232C interface</td>
<td>Transmission rate</td>
</tr>
<tr>
<td>Data format</td>
<td>binary</td>
</tr>
<tr>
<td></td>
<td>8 data bits</td>
</tr>
<tr>
<td></td>
<td>one stop bit</td>
</tr>
<tr>
<td></td>
<td>no parity bit</td>
</tr>
<tr>
<td></td>
<td>no handshake</td>
</tr>
<tr>
<td></td>
<td>(\rightarrow) "Power Connection"</td>
</tr>
<tr>
<td>Diagnostic port</td>
<td>Jack connector, 2.5 mm, 3-pin</td>
</tr>
</tbody>
</table>
Supply

DANGER

The gauge may only be connected to power supplies, instruments or control devices that conform to the requirements of a grounded protective extra-low voltage (PELV) and limited power source (LPS), Class 2. The connection to the gauge has to be fused 3).

Supply voltage at the gauge
- Class 2 / LPS
 - +14 … +30 V (dc) or
 - ±15 V (±5%)

Ripple
- ≤1 V_{pp}

Power consumption without fieldbus
- while being heated: ≤12 W
- at operating temperature: ≤8 W

with fieldbus
- while being heated: ≤13.5 W
- at operating temperature: ≤9.5 W

Fuse to be connected 3) 1.25 AT

The gauge is protected against reverse polarity of the supply voltage and overload.

Electrical connection
- 3CC1-xxx-0xxx 9-pin D-sub, male
- 3CC1-xxx-2xxx 15-pin D-sub, male

Sensor cable for
- 3CC1-xxx-0xxx 9-pin plus shielding
- 3CC1-xxx-2xxx 15-pin plus shielding

3) INFICON controllers fulfill this requirement.
Sensor cable: 15-pin plus shielding

Cable length

<table>
<thead>
<tr>
<th>Supply voltage (V)</th>
<th>Cable length (m)</th>
<th>Conductor cross-section (mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>≤ 8</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>≤ 15</td>
<td>0.25</td>
</tr>
<tr>
<td>24</td>
<td>≤ 43</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>≤ 75</td>
<td>0.25</td>
</tr>
<tr>
<td>30</td>
<td>≤ 88</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>≤ 135</td>
<td>0.25</td>
</tr>
</tbody>
</table>

For longer cables, larger conductor cross-sections are required ($R_{\text{cable}} \leq 1.0 \ \Omega$).

Grounding concept

→ "Power Connection"

Materials exposed to vacuum

- ceramics ($Al_2O_3 \geq 99.5\%$)
- stainless steel AISI 316L

Internal volume

≤ 4.2 cm³

Admissible pressure (absolute)

<table>
<thead>
<tr>
<th>Pressure range</th>
<th>Admissible pressure (bar)</th>
<th>Admissible pressure (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 / 500 / 1000 / 1100 F.S.</td>
<td>4</td>
<td>400</td>
</tr>
<tr>
<td>1 / 2 / 5 / 10 / 20 / 50 / 100 F.S.</td>
<td>2.6</td>
<td>260</td>
</tr>
<tr>
<td>0.05 / 0.1 / 0.25 / 0.5 F.S.</td>
<td>1.3</td>
<td>130</td>
</tr>
</tbody>
</table>

Bursting pressure (absolute)

6 bar | 600 kPa

Admissible temperatures

- **Storage**: −40 °C ... +65 °C
- **Operation**: +10 °C ... +40 °C
- **Bakeout**: ≤ 110 °C at the flange

Relative humidity

≤ 80% at temperatures ≤ +31 °C, decreasing to 50% at +40 °C

Use

indoors only, altitude up to 2000 m NN

Degree of protection

IP 40
Dimensions [mm]

837 ... 897 g
Analog Measurement Signal vs. Pressure

\[p = \left(\frac{U_{\text{out}}}{10 \text{ V}} \right) \times p \text{ (F.S.)} \]

Conversion Torr ↔ Pascal

<table>
<thead>
<tr>
<th>Torr</th>
<th>(\text{mbar}^{4)})</th>
<th>(\text{Pa}^{4)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>(\frac{1013.25}{760} = 1.3332\ldots)</td>
<td>(\frac{101325}{760} = 133.3224\ldots)</td>
</tr>
</tbody>
</table>

Example: Gauge with 10 Torr F.S.
Measurement signal \(U_{\text{out}} = 6 \text{ V} \)

\[p = \left(\frac{6 \text{ V}}{10 \text{ V}} \right) \times 10 \text{ Torr} \]
\[= 0.6 \times 10 \text{ Torr} = 6 \text{ Torr} \]

4) Source: NPL (National Physical Laboratory)
3 Installation

WARNING
Fragile components
The ceramic sensor may be damaged by impacts.
Do not drop the product and prevent shocks and impacts.

3.1 Vacuum Connection

DANGER
Overpressure in the vacuum system >1 bar
Injury caused by released parts and harm caused by escaping process gases can result if clamps are opened while the vacuum system is pressurized.
Do not open any clamps while the vacuum system is pressurized. Use the type clamps which are suited to overpressure.

DANGER
Overpressure in the vacuum system >2.5 bar
KF flange connections with elastomer seals (e.g. O-rings) cannot withstand such pressures. Process media can thus leak and possibly damage your health.
Use O-rings provided with an outer centering ring.
Protection ground
Products that are not correctly connected to ground can be extremely hazardous in the event of a fault.
Electrically connect the gauge to the grounded vacuum chamber. This connection must conform to the requirements of a protective connection according to EN 61010:
• CF and VCR flanges fulfill this requirement.
• For gauges with a KF flange, use a conductive metallic clamping ring.
• For gauges with a ½" tube, take appropriate measures to fulfill this requirement.

Caution
Vacuum component
Dirt and damages impair the function of the vacuum component.
When handling vacuum components, take appropriate measures to ensure cleanliness and prevent damages.

Caution
Dirt sensitive area
Touching the product or parts thereof with bare hands increases the desorption rate.
Always wear clean, lint-free gloves and use clean tools when working in this area.
Mount the gauge so that no vibrations occur. The gauge may be mounted in any orientation. To keep condensates and particles from getting into the measuring chamber preferably choose a horizontal to upright position. If adjustment should be possible after the gauge has been installed, be sure to install it so that the buttons can be accessed with a pin (→ 22).

Remove the protective lid and connect the product to the vacuum system.

Keep the protective lid.
3.2 Power Connection

Make sure the vacuum connection is properly made (→ 3.15).

DANGER

The gauge may only be connected to power supplies, instruments or control devices that conform to the requirements of a grounded protective extra-low voltage (PELV) and limited power source (LPS), Class 2. The connection to the gauge has to be fused 5).

Ground loops, differences of potential, or EMC problems may affect the measurement signal. For optimum signal quality, please do observe the following notes:

- Use an overall metal braided shielded cable. The connector must have a metal case.
- Connect the cable shield to ground at one side via the connector case. Make sure the connector case has direct contact to the cable’s shield on its whole circumference. Do not connect the other side of the shield.
- Connect the supply common with protective ground directly at the power.
- Use differential measurement input (signal common and supply common conducted separately).
- Potential difference between supply common and housing ≤18 V (overvoltage protection).

5) INFICON controllers fulfill this requirement.
3.2.1 D-sub, 9-pin Connector

If no sensor cable is available, make one according to the following diagram (cable length and conductor cross-sections → § 12).

Electrical connection

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Signal output (measurement signal)</td>
</tr>
<tr>
<td>2</td>
<td>n.c.</td>
</tr>
<tr>
<td>3</td>
<td>n.c.</td>
</tr>
<tr>
<td>4</td>
<td>Supply (+14...+30 V or +15 V)</td>
</tr>
<tr>
<td>5</td>
<td>Supply (-15 V)</td>
</tr>
<tr>
<td>6</td>
<td>n.c.</td>
</tr>
<tr>
<td>7</td>
<td>Gauge identification or Remote Zero Adjust</td>
</tr>
<tr>
<td>8</td>
<td>Signal common</td>
</tr>
<tr>
<td>9</td>
<td>Supply common</td>
</tr>
<tr>
<td>case</td>
<td>Connector case</td>
</tr>
</tbody>
</table>

Remote Zero Adjust
3.2.2 D-sub, 15-pin Connector

If no sensor cable is available, make one according to the following diagram (cable length and conductor cross-sections → § 12).

Electrical connection
- Pin 1, 4: Relay SP1, closing contact
- Pin 2: Signal output (measurement signal) or thresholds SP1/2
- Pin 3: Status
- Pin 5: Supply common
- Pin 6: Supply (-15 V)
- Pin 7, 11: Supply (+14 ... +30 V or +15 V)
- Pin 8, 9: Relay SP2, closing contact
- Pin 10: Gauge identification or Remote Zero Adjust
- Pin 12: Signal common
- Pin 13: RS232, TxD
- Pin 14: RS232, RxD
- Pin 15: Housing (Chassis Ground)

Diagram
- Status
- SP1
- SP2
- TxD
- RxD
- 10 Ω
- 18 V
- 100nF
- 1 M
- Remote Zero Adjust
- +15 V
- +14...30 V
- +15 V
- Case

15-pin D-sub female soldering side
4 Operation

Put the gauge into operation. If you are using an INFICON controller (VGC4 series), define the measurement range (→ [1], [2], [3], [4]).

A warm-up time of at least ½ hour should be allowed; for precise pressure measurements a warm-up time of at least 2 hours is required.

If the gauge is used for fast downstream pressure control we recommend setting its signal filter to "fast".

The filter can be set via the RS232C interface or the diagnostic port (→ [5]).

4.1 Status Indication

<table>
<thead>
<tr>
<th>LED</th>
<th>LED status</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td><STATUS></td>
<td>off</td>
<td>no supply voltage</td>
</tr>
<tr>
<td></td>
<td>lit solid green</td>
<td>measurement mode</td>
</tr>
<tr>
<td></td>
<td>blinking green</td>
<td>warning, over/underrange</td>
</tr>
<tr>
<td></td>
<td>short blinks</td>
<td>warming up</td>
</tr>
<tr>
<td></td>
<td>long blinks</td>
<td>error</td>
</tr>
<tr>
<td></td>
<td>lit solid red</td>
<td></td>
</tr>
<tr>
<td><SP1></td>
<td>lit green green</td>
<td>p ≤ setpoint 1</td>
</tr>
<tr>
<td></td>
<td>blinking green</td>
<td>waiting for setpoint 1 input</td>
</tr>
<tr>
<td></td>
<td>off</td>
<td>p > setpoint 1</td>
</tr>
<tr>
<td><SP2></td>
<td>lit solid green</td>
<td>p ≤ setpoint 2</td>
</tr>
<tr>
<td></td>
<td>blinking green</td>
<td>waiting for setpoint 2 input</td>
</tr>
<tr>
<td></td>
<td>off</td>
<td>p > setpoint 2</td>
</tr>
</tbody>
</table>
4.2 Zeroing the Gauge

The gauge is factory calibrated while "standing upright" (→ "Calibration Test Report").

We recommend performing a zero adjustment, when the gauge is operated for the first time.

Due to long time operation or contamination, a zero drift could occur and zero adjustment may become necessary.

For adjusting the zero, operate the gauge under the same constant ambient conditions and in the same mounting orientation as normally.

The output signal (measuring signal) is depending on the mounting orientation. The signal difference between the vertical and horizontal mounting orientation is:

<table>
<thead>
<tr>
<th>F.S.</th>
<th>(\Delta U / 90^\circ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 Torr/mbar</td>
<td>≈2 mV</td>
</tr>
<tr>
<td>100 Torr/mbar</td>
<td>≈10 mV</td>
</tr>
<tr>
<td>10 Torr/mbar</td>
<td>≈50 mV</td>
</tr>
<tr>
<td>1 Torr/mbar</td>
<td>≈300 mV</td>
</tr>
<tr>
<td>0.1 Torr/mbar</td>
<td>≈1.8 V</td>
</tr>
</tbody>
</table>

If the gauge is operated via a controller, the zero of the whole measuring system has to be adjusted on the controller: first, adjust the zero of the gauge and then, the zero of the controller.
4.2.1 <ZERO> Adjustment

The zero can be adjusted via
- the <ZERO> button on the gauge,
- the diagnostic port (→ [5]),
- the digital input "Remote Zero": Apply the supply voltage to pin 10 (15-pin) or to pin 7 (9-pin), pulse → 10,
- the RS232C interface (→ [5]),
- an INFICON Vacuum Gauge Controller (VGC series).

While the gauge is being heated and/or under atmospheric pressure, the zeroing function is locked in order for operating errors to be prevented.

Evacuate the gauge to a pressure according to the table below:

<table>
<thead>
<tr>
<th>F.S.</th>
<th>Recommended final pressure for zero adjustment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1100 mbar</td>
<td><6.65×10^0 Pa</td>
</tr>
<tr>
<td>1000 Torr</td>
<td><6.65×10^1 Pa</td>
</tr>
<tr>
<td>500 Torr/mbar</td>
<td><6.65×10^2 Torr</td>
</tr>
<tr>
<td>200 Torr/mbar</td>
<td><6.65×10^3 Torr</td>
</tr>
<tr>
<td>100 Torr/mbar</td>
<td><6.65×10^4 Torr</td>
</tr>
<tr>
<td>50 Torr/mbar</td>
<td><6.65×10^5 Torr</td>
</tr>
<tr>
<td>20 Torr/mbar</td>
<td><6.65×10^6 Torr</td>
</tr>
<tr>
<td>10 Torr/mbar</td>
<td><6.65×10^7 Torr</td>
</tr>
<tr>
<td>5 Torr/mbar</td>
<td><6.65×10^8 Torr</td>
</tr>
<tr>
<td>2 Torr/mbar</td>
<td><6.65×10^9 Torr</td>
</tr>
<tr>
<td>1 Torr/mbar</td>
<td><6.65×10^10 Torr</td>
</tr>
<tr>
<td>0.5 Torr/mbar</td>
<td><6.65×10^11 Torr</td>
</tr>
<tr>
<td>0.25 Torr/mbar</td>
<td><6.65×10^12 Torr</td>
</tr>
<tr>
<td>0.1 Torr/mbar</td>
<td><6.65×10^13 Torr</td>
</tr>
</tbody>
</table>

If the final pressure is too high for zero adjustment (>25% of the F.S.), the zero cannot be reached and the <STATUS> LED blinks green. If this is the case, activate the factory setting and adjust the zero again (→ 30).
2 Operate the gauge for at least ¼ hour (until the signal is stable).

3 Briefly press the <ZERO> button with a pin (max. Ø1.1 mm). The zero adjustment runs automatically. The <STATUS> LED blinks until the adjustment (duration ≤8 s) is completed.

After zero adjustment, the gauge automatically returns to the measurement mode.

The <STATUS> LED blinks green if

- the signal output is negative (< -20 mV) when the final pressure has been attained
- the zero adjustment has failed.

4.2.2 <ZERO> Adjustment with Ramp Function

The ramp function allows to adjust the zero at a known reference pressure within the measurement range of the gauge.
It also permits to adjust an offset of the characteristic curve in order to
- compensate for the offset of the measuring system or
- obtain a slightly positive zero for a 0 … 10 V AD converter.

The offset should not exceed 2% of the F.S. (+200 mV). At a higher positive offset, the upper limit of the measurement range is exceeded.

Zero adjustment using the ramp function can be performed via
- the <ZERO> button on the gauge,
- the diagnostic port (→ [5]),
- the RS232C interface (→ [5]).

Recommended procedure for adjusting the offset of a measuring system: → Notice 22.

1. Operate the gauge for at least 1 hour (until the signal is stable).

2. Push the <ZERO> button with a pin (max. ø1.1 mm) and keep it depressed. The <STATUS> LED starts blinking. After 5 s, the zero adjustment value, starting at the current output value, keeps continually changing (ramp) until the button is released or until the setting limit (max. 25% F.S.) is reached. The corresponding output signal is delayed by about 1 s.
Keep the button depressed
max. ø1.1 mm

3 Push the <ZERO> button again:

| Fine adjustment within 0...3 s: | the zero adjustment value changes by one unit (push <ZERO> button in intervals of 1 s) |
| Change of direction within 3...5 s: | the zero adjustment changes its direction (the blinking frequency of the <STATUS> LED changes briefly) |

If the <ZERO> button is released for more than 5 s, the gauge returns to the measurement mode.

The <STATUS> LED blinks green if the signal output is negative (< -20 mV).
4.3 **Switching Functions**

The two switching functions can be set to any pressure within the measurement range of the gauge (→ \(\Xi \) 14).

The current setpoint setting

- can be read/written via the diagnostic port,
- is output at the D-Sub connector instead of the measurement signal (→ \(\Xi \) 20) and can be measured with a voltmeter after the <SP> button is pressed, or
- can be read/written via the RS232C interface.

If the pressure is lower than the setpoint, the corresponding LED (<SP1> or <SP2>) is lit solid and the corresponding relay (→ \(\Xi \) 20) is energized.

![Measurement signal diagram](image)

Measurement signal diagram

- **Setpoint**
- **Hysteresis (1% F.S.)**
- **Threshold value**

Measurement signal (pressure p)

- **Off**
- **On**
- **Off**

Time t
4.3.1 Adjusting the Setpoints

The setpoints can be adjusted via

- the buttons on the gauge,
- the diagnostic port (→ [5]),
- the RS232C interface (→ [5]).

DANGER

Malfunction

If processes are controlled via the signal output, keep in mind that by pushing the <SP> button the measurement signal is suppressed and the corresponding threshold value is output instead. This can cause malfunctions.

Push the <SP> button only if you are sure that no malfunction cause.

Adjusting Setpoint <1>

Push the <SP> button with a pin (max. ø1.1 mm). The gauge changes to the switching function mode and outputs the current threshold value at the measurement value output for about 10 s (LED <1> blinks).
For changing the threshold value, push the <ZERO> button and keep it depressed. The threshold keeps changing from the current value (ramp) until the button is released or until the limit of the setting range is reached.
Push the <ZERO> button again:

<table>
<thead>
<tr>
<th>Fine adjustment within 0...3 s:</th>
<th>the zero adjustment value changes by one unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change of direction within 3...5 s:</td>
<td>the zero adjustment changes its direction (the blinking frequency of the <STATUS> LED changes briefly)</td>
</tr>
</tbody>
</table>

- If the <ZERO> button is released for more than 5 s, the gauge returns the measurement mode.
- The upper threshold is automatically set 1% F.S. above the lower one (hysteresis).

Adjusting Setpoint <2>

Push the <SP> button twice (the LED <2> blinks). The adjustment procedure is the same as for setpoint <1>.

4.4 Activating the Factory Setting (Factory Reset)

All user defined parameters (e.g. zero, filter) are restored to their default values.

⚠️ Loading of the default parameters is irreversible.

Loading the default parameters:

1. Put the gauge out of operation.
2. Keep the <ZERO> button depressed for at least 5 s while the gauge is being put into operation (Power ON).
4.5 Diagnostic Port (RS232C Interface)

The diagnostic port <DIAG> permits to output the pressure reading and all status information and to enter all settings at the same time (→ "Accessories")[5]).
5 Deinstallation

WARNING

Fragile components
The ceramic sensor may be damaged by impacts. Do not drop the product and prevent shocks and impacts.

DANGER

Contaminated parts
Contaminated parts can be detrimental to health and environment. Before beginning to work, find out whether any parts are contaminated. Adhere to the relevant regulations and take the necessary precautions when handling contaminated parts.

Caution

Vacuum component
Dirt and damages impair the function of the vacuum component. When handling vacuum components, take appropriate measures to ensure cleanliness and prevent damages.
Caution

Dirt sensitive area
Touching the product or parts thereof with bare hands increases the desorption rate.
Always wear clean, lint-free gloves and use clean tools when working in this area.

1. Vent the vacuum system.
2. Put the gauge out of operation.
3. Unfasten the lock screws and disconnect the sensor cable.
4. Remove the gauge from the vacuum system and install the protective lid.
6 Maintenance, Repair

Under clean operating conditions, the product requires no main-
tenance.

Gauge failures due to contamination are not covered by
the warranty.
We recommend checking the zero at regular intervals
(→ § 23).

INFICON assumes no liability and the warranty becomes null
and void if any repair work is carried out by the end-user or third
parties.

7 Returning the Product

WARNING

Forwarding contaminated products
Contaminated products (e.g. radioactive, toxic,
caustic or microbiological hazard) can be detrimen-
tal to health and environment.
Products returned to INFICON should preferably be
free of harmful substances. Adhere to the forward-
ing regulations of all involved countries and for-
warding companies and enclose a duly completed
declaration of contamination *)

*) Form under www.inficon.com

Products that are not clearly declared as "free of harmful sub-
stances" are decontaminated at the expense of the customer.
Products not accompanied by a duly completed declaration of
contamination are returned to the sender at his own expense.
8 Disposal

DANGER

Contaminated parts
Contaminated parts can be detrimental to health and environment.
Before beginning to work, find out whether any parts are contaminated. Adhere to the relevant regulations and take the necessary precautions when handling contaminated parts.

WARNING

Substances detrimental to the environment
Products or parts thereof (mechanical and electric components, operating fluids etc.) can be detrimental to the environment.
Dispose of such substances in accordance with the relevant local regulations.

Separating the components
After disassembling the product, separate its components according to the following criteria:

- Contaminated components
 Contaminated components (radioactive, toxic, caustic or biological hazard etc.) must be decontaminated in accordance with the relevant national regulations, separated according to their materials, and disposed of.

- Other components
 Such components must be separated according to their materials and recycled.
9 Accessories

<table>
<thead>
<tr>
<th>Ordering number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication adapter (2 m)</td>
</tr>
</tbody>
</table>

Further Information

Operating Manual
Vacuum Gauge Controller VGC032
tinb02e1
INFICON AG, LI–9496 Balzers, Liechtenstein

Operating Manual
Single-Channel Controller VGC401
tinb01e1
INFICON AG, LI–9496 Balzers, Liechtenstein

Operating Manual
Two- & Three-Channel Measurement and Control Unit
VGC402, VGC403
tinb07e1
INFICON AG, LI–9496 Balzers, Liechtenstein

Operating Manual
One, Two- & Three-Channel Measurement and Control Unit VGC501, VGC502, VGC503
tina96e1
INFICON AG, LI–9496 Balzers, Liechtenstein

6) The diagnostic software (Windows NT, XP) can be downloaded from our website.
Communication Protocol
RS232C Interface
tira49e1
INFICON AG, LI–9496 Balzers, Liechtenstein

Communication Protocol
DeviceNet™ CDG045D
tira51e1
INFICON AG, LI–9496 Balzers, Liechtenstein

Communication Protocol
Profibus CDG045D
tira54e1
INFICON AG, LI–9496 Balzers, Liechtenstein

[8] www.inficon.com
Communication Protocol
EtherCAT CDG045D (ETG.5003.2080 S (R) V1.0.0)
tira68e1
INFICON AG, LI–9496 Balzers, Liechtenstein

Communication Protocol
EtherCAT CDG045D (ETG.5003.2080 S (R) V1.3.0)
tirb45e1
INFICON AG, LI–9496 Balzers, Liechtenstein
ETL Certification

ETL LISTED

The product CDG045D

- conforms to the UL Standard UL 61010-1
- is certified to the CAN/CSA Standard C22.2 No. 61010-1-12
EU Declaration of Conformity

We, INFICON, hereby declare that the equipment mentioned below complies with the provisions of the Directive relating to electromagnetic compatibility 2014/30/EU and the Directive on the restriction of the use of certain hazardous substances in electrical and electronic equipment 2011/65/EU.

Product

Capacitance Diaphragm Gauge
CDG045D

Standards

Harmonized and international/national standards and specifications:

- EN 61000-6-2:2005 (EMC: generic immunity standard)
- EN 61010-1:2010 (Safety requirements for electrical equipment for measurement, control and laboratory use)
- EN 61326:2013; Group 1, Class B (EMC requirements for electrical equipment for measurement, control and laboratory use)

Manufacturer / Signatures

INFICON AG, Alte Landstraße 6, LI-9496 Balzers

3 January 2017

Dr. Bernhard Andreaus
Director Product Evolution

3 January 2017

Alex Nef
Product Manager