Produktivitätssteigerung durch moderne Lecksuchgeräte auf Wasserstoff-Basis

Zur Lecksuche und Dichtheitsprüfung wird bei der Wasserstoff-Methode ein Formergas – üblicherweise ein Standardgemisch aus Stickstoff und Wasserstoff – eingesetzt. Das Gemisch setzt sich aus 5% Wasserstoff (H_2) und 95% Stickstoff (N_2) zusammen. Das Formergas ist vollkommen ungiftig und reagiert als inertes Gas nicht mit den Oberflächen anderer Werkstoffe. Dank der niedrigen Wasserstoff-Konzentration ist das Gemisch zudem nicht entzündlich. Formergas wird daher auch als Schutzgas beim Schweißen, Löten oder Walzen verwendet. Also immer

Von Dipl.-Ing. Sandra Seitz
Inficon GmbH, www.inficonautomotive.de

>>1: Produktion in der Automobilindustrie
dann, wenn unter großer Hitzeeinwirkung die Gefahr besteht, dass zu bearbei-
tende Metalle oxidieren könnten. Aufgrund dieser Eigenschaften wird Formier-
gas international mit der Norm ISO 10156:2010 klassifiziert. Formiergas ist zu-
dem unproblematisch in Herstellung, Transport und Lagerung, was niedrige
Marktpreise von wenigen Euro pro 1.000 l ermöglicht. Ein dichtes Händlernetz
garantiert die schnellere und sichere Verteilung. Als standardisiertes Produkt mit
den beschriebenen Eigenschaften eignet sich Formiergas damit hervorragend
für den industriellen Einsatz.

Wasserstoff in der Lecksuche
Was Formiergas darüber hinaus für den Einsatz als Spürgas in der Lecksuche
so attraktiv macht, ist allerdings nicht so sehr eine Eigenschaft des Wasserstoffs
sondern ein Merkmal unserer Atmosphäre. Freier Wasserstoff kommt nur in
Spuren in ihr vor. Auf 10.000.000 Moleküle in der Luft entfallen lediglich fünf
Wasserstoffatome, was einer Konzentration von 0,00005% oder 0,5 ppm ent-
spricht. Gegen diese geringe Hintergrundkonzentration, auch Untergrund ge-
nannt, lässt sich ein plötzlicher Anstieg der Wasserstoffkonzentration durch aus-
tretendes Prüfgas mit einem Sensor hervorragend detektieren. Das ist einer der
Gründe, warum sich die Wasserstoff-Lecksuche inzwischen branchenübergrei-
fend immer mehr gegen die herkömmlichen Methoden der optischen Lecksuche
im Wasserbad oder mittels Lecksuchspray durchsetzt.

Nutzen in der Automobilindustrie
Gerade für die Automobil- und Zulieferindustrie offenbart der Vergleich von Was-
serbad und Lecksuchspray, meist eine Seifenlauge, mit der Wasserstoff-Metho-
de noch eine ganze Reihe weitere Vorteile. Bei den herkömmlichen Methoden ist
bereits der Einsatz von Flüssigkeiten ein Problem. Schließlich werden Fahr-
zeugkomponenten trocken und sauber verbaut. Nach dem Einsatz der her-
kömmlichen Prüfmedien Wasser oder Lauge müssen die Prüfteile erst wieder
mühsam und zeitaufwändig getrocknet werden. Bei der Verwendung von Leck-
suchspray entstehen zudem Schmierfilme auf den Prüfteilen, die es sorgfältig zu
entfernen gilt. Schließlich dürfen einige Komponenten wie etwa Getriebeteile
überhaupt nicht mit Flüssigkeiten in Berührung kommen, da bereits sensible
Elektronikteile verbaut sind oder Korrosionsgefahr besteht.

Der Faktor Zeit
Aber schon die Prüfverfahren selbst disqualifizieren sich oftmals durch den
enormen Zeitbedarf: Bei der integralen Dichtheitsprüfung des Kraftstoffsystems

DICHTUNGSTECHNIK JAHRBUCH 2014

Hohe Nutzerfreundlichkeit

Die Bedeutung von Leckgrößen

Spürbare Unterschiede

Geringe Investitionskosten + niedrige Betriebskosten = Kosteneffizienz

Mythen in der Wasserstoff-Lecksuche

Die frühere branchenweite Annahme, Wasserstoff würde sich im Vergleich zu Helium schneller verflüchtigen, was die Gefahr einer steigenden Hintergrundkonzentration und damit einer Sättigung oder „Verseuchung“ eines Lecksuchge-

Ausblick – die Prüfung in der Linie

Sie suchen maßgeschneiderte Seminare & Workshops im Bereich Dichtungs-, Klebe- und Elastomertechnik?

Nutzen Sie die ISGATEC AKADEMIE für Ihre Inhouse-Seminare!

Fragen Sie an: Stefanie Wüst
swuest@isgatec.com
Telefon: +49 (0) 621-71 76 88 82

Weitere Informationen unter: www.isgatec.com